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In [1] Toms experimentally established that in a certain concentration range the drag of a turbulent tube flow of
a solution of polymethyl methacrylate in monochlorobenzene is less than for the solvent. Subsequently, this effect was
observed in connection with the turbulent flow of dilute aqueous soluticns in tubes, between rotating coaxial cylinders,
and also in flow around streamlined and bluff bodies. High-molecular compounds of both biological and synthetic origin
have been used as additives [2-7].

Numerous investigations have revealed the following properties of flows of solutions that exhibit the Toms effect.
First, the effect is substantial only when linear polymers are used, and branching has an adverse influence [6]. The
important role of the elongation of the particles has been rigorously demonstrated in experiments on tube flows of
water containing nylon fibers with elongations of from 11.69 to 51.14 [8]. Secondly, the dissolved particles chiefly
affect a layer of fluid near the walls, without causing changes in the zone of developed turbulent flow [9-11].

In [12], in order to explain the Toms effect, a hypothesis was proposed that takes into account these two
properties of solution flows. According to this hypothesis, as a result of the large velocity gradient in the viscous
sublayer and transition layer the elongated particles are oriented along the flow, thus damping the transverse velocity
fluctuations v'. This leads to a reduction of the turbulent friction pgu'v'), where u' is the fluctuation of the longitudinal
velocity component.

In what follows qualitative calculations based on the proposed hypothesis are compared with the experimental
data,

The orientation of elongated particles in a laminar flow due to the velocity gradient has been demonstrated
theoretically (for example, [13], pp. 499-521). The experimental confirmation follows from an analysis of the curves
representing the friction stress in the solution T as a function of velocity gradient ([12,13], ch. II) and the
birefringence in the flow ([13], ch. VII, VIII). The viscosity of the solution decreases with increase in velocity gradient
(Fig. 1).

Fig. 1. 1) Newtonian fluid (solvent), 2)
solution.

We denote by ux the coefficient of viscosity of the solution for flow in the direction of the x-axis leading to
orientation of the elongated particles (Fig, 2a). In highly dilute solutions

te = po {1 + ¢ [pl).- (1)

Here 1, is the viscosity of the solvent, ¢ is the concentration, and [u] is the intrinsic viscosity, which depends on
the velocity gradient,

If in a flow of solution with an angle of most probable orientation ¢, a secondary flow with shear along the
y-axis (Fig. 2b) develops, for example, as a result of turbulent velocity fluctuations, we denote the corresponding
viscosity coefficient by by At sufficiently small velocity gradients, when ¢y, = 45°, ux = ,uy.’ With increase in the
velocity gradient of the flow along the x-axis the angle ¢, —~ 0, as a result of which py decreases, while py increases.
We call the ratio
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Ko = pyliy
the dynamic viscosity anisotropy of the solution.

At sufficiently small velocity gradients, K, = 1; at large gradients it is always greater than unity. For any
gradient it can be calculated, since the quantity by is also expressed in terms of the infrinsic viscosity by Eq. (1),
but in this case the intrinsic viscosity should correspond to shear along the y-axis.

Let us consider the behavior of the fluid in the viscous sublayer and the transition layer of the turbulent flow,

where the velocity gradient along the x-axis is large (greater than 10%). Accordingly, it may be assumed that Pm =0,
and then the calculation of K, is considerably simplified.
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Fig. 2.

We will demonstrate this with reference to the example of a solution containing simple dumbbell-shaped
elongated particles. A calculation method for particles of more complicated configuration is described in [14].

The dissipation of flow energy by the particle, leading to an increase in the viscosity of the solution as compared
with the solvent, depends linearly on the flow velocity V (Fig. 2b):

V=11lcosg g 2)

Here, [ is the length of the dumbbell, ¢ is the orientation angle, and g is the velocity gradient.

For ¢ = 0 and shear along the x-axis V; = dg/2 (here, d is the diameter of the ball of the dumbbell); for ¢ =0
and shear along the y-axis the Stokes velocity

Ve = Yalg
Hence it is clear that for a highly elongated particle (1/d >» 1)
By > by

As the elongation of the particle increases, so does the value of K.

In solution macromolecules with a high molecular weight have a configuration more complicated than that of
dumbbells, rods, ellipsoids, and similar simple shapes. However, the proposed approach is applicable to them also,
as follows from the experimental determination of the variation of intrinsic viscosity with velocity gradient. Thus,
for example, in a solution of poly-y-benzyl L-glutamate with a2 molecular weight of 1.3« 10° the intrinsic viscosity de-
creases by a factor of approximately 7 with increase in velocity gradient, and by a factor of approximately 20 at a mo-
lecular weight of 3.36-10°., When the same molecules pass from a cylindrical spiral conformation to a statistical coil
there is no decrease in intrinsic viscosity ([13], p. 174.)

For purposes of the subsequent qualitative calculations we will determine the limiting value of K, characterizing
a dilute solution of highly elongated particles with a small transverse dimension in the presence of a high velocity
gradient, i.e., when ¢ = 0. Under these conditions py ~ y, (Fig. 1, [12]), and py is easily calculated using the value
of the intrinsic viscosity at very small velocity gradients. Since at small velocity gradients ¢m = 45°, whereas at
large gradients ¢, = 0, the ratio of the velocities at these two orientation angles, when the shear is along the y-axis,
is equal to cos 45° (Eq. (2)). In the presence of Stokes flow the drag is directly proportional to the freestream
velocity; therefore the ratio of the intrinsic viscosities is also equal to cos 45°, Consequently,

{0 clul )

By :”"K T cos45°
where [y is the intrinsic viscosity at very small velocity gradients. For the limiting value of the dynamic viscosity
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anisotropy we obtain
Ko=1-+ V2 [pl. (3)

All this relates to laminar flows. However, the principal requirement—the presence of a large velocity gradient
in one direction—is also satisfied in the turbulent boundary layer (in the viscous sublayer and the transition layer). In
this zone the elongated particles should be oriented with the long axis along the wall. The fluctuations in the viscous
sublayer and transition layer create fluctuatlonal velocity gradlents

The dissipation of fluctuating motion along and across the flow is determined by the longitudinal pyx and
transverse uy viscosities. As a result of the dynamic viscosity anisotropy the transverse fluctuations should be more
strongly damped. In the turbulent core, where the averaged velocity gradient is relatively small, there is practically
no dynamic viscosity anisotropy, and the flow behaves like a Newtonian fluid,

This property of solution flow has been experimentally confirmed by Khabakhpasheva (Siberian Thermophysics
Colloguium, 1968; for a description of the measurements see [15]). In that part of the viscous sublayer and the
transition layer where it has proved possible to obtain experimental data, the transverse velocity fluctuations in an
aqueous solution were found to be approximately three times less than in water, and the longitudinal fluctuations in a
certain zone even greater,

In order to calculate the Toms effect we will start from the experimentally established relations for the quasi-
stationary thickness of the viscous sublayer and the averaged velocity distribution in the sublayer for a Newtonian fluid
flow:

L Heo
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U:;&f}/ and y<60 (5)

Here, 6, is the thickness of the viscous sublayer, v, is the kinematic viscosity, Ty, is the friction stress at the
wall, p, is the solvent density, a is an experimentally determined constant, and U is the averaged longitudinal velocity.

Let us compare the flows of solvent (Newtonian fluid) and solution at the same averaged velocity gradient in the
viscous sublayer. The dependence of the friction stress at the wall on the averaged velocity gradient in the solution is
represented in a form analogous to (5):

dU
1w:Hx@+b (6)

Here, b is the non-Newtonian correction, a function of the velocity gradient whose significance is clear from
Fig. 1. Since as

du b
d—yﬁ« 50, MWy > Po audm—»o
for a sufficiently large averaged velocity gradient we can write

Ty = Typ* 1t

where 7,* is the friction stress at the wall in the solution.

Since in the solvent dand solution flows only the two viscosities by and u, differ, for the thickness of the viscous
sublayer in the solution we can write the general expression

. Vof (Vy / Vo) (8)

6*..__
’ Vw*Fp

Here ay is a constant, p is the density of the solution, and f(vy/vo) is a still unknown function.

The form of the function f can be found by considering the action of the velocity fluctuations on the particles
oriented by the averaged flow. The simplest form of this funection is
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Moreover, we assume that a = a,. If we now use relation (7) and the approximation p = py, which is valid for
dilute solutions, then for the ratio of the thicknesses of the viscous sublayer we can write:

i.e., the thickness of the viscous sublayer in the solution is greater than that in the solvent by a factor of
approximately K,.

We now compare the flows of solvent and solution at the same averaged velocity gradients in the viscous
sublayer. Accordingly, at the outer edge of the viscous sublayer in the solution the averaged velocity will be greater
than in the solvent by AU (using relations (1), (2), and (7)):

d
AU:U[*-—UZz%DD’((So*—'So)z Tzoo {Ka—i) (10)

where Uy is the averaged velocity at the outer edge of the viscous sublayer,
For a qualitative calculation the constant @ may be taken equal to 10 [16].

As a resuilt, instead of (10) we obtain
AU =10 V 1yl po (Ky— 1) (11)

The velocity increment AU, obtained at the outer edge of the viscous sublayer (in this qualitative calculation the
transition layer is disregarded), will be the velocity increment at the outer edge of the boundary layer, since in the
turbulent core the solution behaves like a Newtonian fluid. In order to relate the local coefficient of friction at the wall
with the velocity at the outer edge of the boundary layer we employ the following formula, valid at Reynolds numbers
Ry of the order of 10" (for another range of Reynolds numbers it is necessary to take the appropriate relation from

[17)):

. ! Ugx 21, P
¢f = 0,0576 (Ry) ™" (Rx = % ) o= plT}uﬁ) {12)

Here, cf is the local coefficient of friction; U, is the velocity at the outer edge of the boundary layer. Then

AU 10 V 0.0576 (K, — 1)
U™ T YIRS 2

Using (3), we finally obtain

AU 5V 0.0576 {plo ¢
‘f]; =~ = —‘(R“x)oll_ - (14)

Qualitative expressions have now been obtained for the relation between the Toms effect and the characteristics
of the boundary layer and the solution, If quantitative data are required, it will be necessary, first, to take into
account the finiteness of the particle elongation; we assumed that the elongation >-1, In this case it may turn out that
kx is appreciably greater than yy. It should also be kept in mind that the elongation of a deformable particle depends
on the shear stress. Secondly, finding the form of the function f(vy/vo) (8) requires theoretical and experimental
investigations of the dependence of the thickness of the viscous sublayer of the solution on the intensity of the
transverse velocity fluctuations in the viscous sublayer and the transition layer.

The final expression (14) not only correctly reflects the laws of turbulent flow of solutions of chain
macromolecules but also gives quantitative results consistent with the experimental data. Thus, for example, at a
solution viscosity i = 2 ¢P and Reynolds number Ry = 107, Eq. (15) gives an increase in velocity by a factor of 2, This
is in good agreement with the experimental data of [1-7], which indicate a velocity increment of 30—50%.

It remains to mention the dependence of the Toms effect on the concentration of the solution (Eq. (14)): this
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becomes more pronounced as the concentration increases. It has been experimentally established that any polymer has
an optimum concentration at which the Toms effect is maximum, diminishing as the concentration continues to
increase, However, this does not contradict relation (14), since it was obtained for very dilute solutions and thus
characterizes only part of the dependence of U™,AU on c.
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