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In [1] Toms e x p e r i m e n t a l l y  e s t ab l i shed  that  in a ce r t a in  concent ra t ion  range  the d r a g  of a turbulent  tube flow of 
a solut ion of po lymethy l  m e t h a c r y l a t e  in monochlorobenzene  is l e s s  than for  the solvent .  Subsequent ly ,  this  effect  was 
o b s e r v e d  in connect ion with the turbulen t  flow of di lute  aqueous solut ions in tubes ,  between ro ta t ing  coaxia l  cy l i nde r s ,  
and a l so  in flow around s t r e a m l i n e d  and bluff bodies .  H igh -mo lecu l a r  compounds of both b io logica l  and synthet ic  or ig in  
have been used  as  add i t ives  [2-7] .  

Numerous  inves t iga t ions  have r e v e a l e d  the fol lowing p r o p e r t i e s  of flows of solut ions  that  exhibi t  the Toms effect .  
F i r s t ,  the effect  is  subs tan t i a l  only when l i nea r  p o l y m e r s  a r e  used ,  and branching  has  an a d v e r s e  inf luence [6]. The 
impor t an t  ro l e  of the e longat ion of the p a r t i c l e s  has  been r i go rous ly  d e m o n s t r a t e d  in e x p e r i m e n t s  on tube flows of 
w a t e r  conta ining nylon f i b e r s  with e longat ions  of f rom 11.69 to 51.14 [8]. Secondly,  the d i s so lved  p a r t i c l e s  chief ly 
affect  a l a y e r  of f luid nea r  the wa i l s ,  without  caus ing  changes  in the zone of developed turbulent  flow [9-11] .  

In [12], in o r d e r  to expla in  the Toms effect ,  a hypothes is  was p roposed  that  t akes  into account  these  two 
p r o p e r t i e s  of solut ion f lows.  Accord ing  to this  hypothes i s ,  as  a r e s u l t  of the l a r g e  ve loc i ty  g rad ien t  in the v i scous  
s u b l a y e r  and t r ans i t i on  l a y e r  the e longated p a r t i c l e s  a r e  o r ien ted  along the flow, thus damping  the t r a n s v e r s e  ve loc i ty  
f luc tua t ions  v ' .  This  l eads  to a r educ t ion  of the tu rbu len t  f r i c t ion  p0(u'v'>, w h e r e  u '  is  the f luctuat ion of the longi tudinal  
ve loc i ty  component .  

In what fol lows qua l i ta t ive  ca lcu la t ions  based  on the p roposed  hypothes is  a r e  c o m p a r e d  with the e x p e r i m e n t a l  
da ta .  

The o r ien ta t ion  of e longated p a r t i c l e s  in a l a m i n a r  flow due to the ve loc i ty  g r ad i en t  has  been d e m o n s t r a t e d  
t h e o r e t i c a l l y  (for example ,  [13], pp. 499-521) .  The e x p e r i m e n t a l  conf i rmat ion  fol lows f rom an ana lys i s  of the cu rves  
r e p r e s e n t i n g  the f r i c t i on  s t r e s s  in the so lu t ion  r as  a function of ve loc i ty  g rad ien t  ([12, 13], ch. II) and the 
b i r e f r i n g e n c e  in the flow ([13], ch. VII, VIII). The v i s c o s i t y  of the solut ion d e c r e a s e s  with i n c r e a s e  in ve loc i ty  g rad ien t  

(F ig .  1), 

z 
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Fig .  1. 1) Newtonian fluid (solvent) ,  2) 
solut ion.  

We denote by #x the coeff ic ient  of v i s c o s i t y  of the solut ion for  flow in the d i r ec t ion  of the x - a x i s  l ead ing  to 
o r i en ta t ion  of the e longated  p a r t i c l e s  (Fig ,  2a). In highly di lu te  so lu t ions  

~ = N0 (i + c I~]). (1) 

Here  tt 0 is the v i s c o s i t y  of the solvent ,  c is the concen t ra t ion ,  and [it] is the i n t r i n s i c  v i s c os i t y ,  which depends on 
the ve loc i ty  g rad ien t .  

If in a flow of solut ion with an angle  of mos t  p robab le  o r ien ta t ion  go m a s e c o n d a r y  flow with s h e a r  along the 
y - a x i s  (F ig .  2b) deve lops ,  for  example ,  as  a r e s u l t  of tu rbulen t  ve loc i ty  f luc tua t ions ,  we denote the co r r e spond ing  
v i s c o s i t y  coef f ic ien t  by py.  At  suf f ic ient iy  s m a l l  ve loc i ty  g r ad i en t s ,  when q~m = 45*, #x = #y. W i t h  i n c r e a s e  in the 
ve loc i ty  g r a d i e n t  of the flow along the x - a x i s  the angle  go m ~ 0, as  a r e s u l t  of which itx d e c r e a s e s ,  while ity i n c r e a s e s .  
We ca l l  the r a t i o  
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Ka = Py/P'x 

the dynamic  v i s c o s i t y  an i so t ropy  of the solut ion.  

At suf f ic ient ly  s m a l l  ve loc i ty  g r a d i e n t s ,  K a = 1; at  l a r g e  g rad i en t s  it  is  a lways  g r e a t e r  than unity.  F o r  any 
g rad ien t  it  can be ca lcu la ted ,  s ince  the quanti ty py is a l so  e x p r e s s e d  in t e r m s  of the i n t r i n s i c  v i s c o s i t y  by Eq. (1), 
but in th is  e a se  the in t r in s i c  v i s c o s i t y  should c o r r e s p o n d  to s h e a r  along the y - a x i s .  

Le t  us cons ide r  the behavior  of the f luid in the v i scous  sub laye r  and the t r a n s i t i o n  l a y e r  of the tu rbu len t  flow, 
where  the veIoc i ty  g rad ien t  along the x - a x i s  is  l a r g e  (g rea t e r  than 102). Acco rd ing ly ,  i t  may  be a s s u m e d  that  9 m  ~ 0, 
and then the ca lcu la t ion  of K a is c o n s i d e r a b l y  s impl i f i ed .  

a b 

Fig .  2. 

We wil l  d e m o n s t r a t e  this  with r e f e r e n c e  to the example  of a solut ion containing s imp le  d u m b b e l l - s h a p e d  
e longated  p a r t i c l e s .  A ca lcula t ion  method for  p a r t i c l e s  of m o r e  compl i ca t ed  conf igura t ion  is  d e s c r i b e d  in [14]. 

The d i s s ipa t ion  of flow energy  by the p a r t i c l e ,  l ead ing  to an i n c r e a s e  in the v i s cos i t y  of the solut ion as c o m p a r e d  
with the solvent ,  depends  l i n e a r l y  on the flow ve loc i ty  V (Fig .  2b): 

V= ~/~Icoscp g 

Here ,  l is the length of the dumbbel l ,  ~o is  the o r ien ta t ion  angle ,  and g is  the ve loc i ty  g rad i en t .  

(2) 

For q~ = 0 and shear along the x-axis V I = dg/2 (here, d is the diameter of the ball of the dumbbell); for ~ = 0 
and shear along the y-axis the Stokes velocity 

v 2 ~ 1/~lg 

Hence i t  is  c l e a r  that  for  a highly e longated p a r t i c l e  ( 1 / d  >> 1) 

Py > ~x 

As the elongation of the particle increases, so does the value of K a. 

In solut ion m a c r o m o l e c u l e s  with a high m o l e c u l a r  weight  have a conf igura t ion  m o r e  compl i ca t ed  than that  of 
dumbbe l l s ,  r o d s ,  e l l i p s o i d s ,  and s i m i l a r  s imp le  shapes .  However ,  the p roposed  approach  is app l i cab le  to them a l so ,  
as  fol lows f rom the e x p e r i m e n t a l  de t e rmina t i on  of the va r i a t i on  of i n t r i n s i c  v i s c o s i t y  with ve loc i ty  g rad ien t .  Thus ,  
for  example ,  in a solut ion of poly-~ , -benzyl  L - g l u t a m a t e  with a mo lecu la r  weight  of 1.3" 105 the i n t r i n s i c  v i s c o s i t y  d e -  
c r e a s e s  by a fac tor  of a p p r o x i m a t e l y  7 with i n c r e a s e  in ve loc i ty  g rad ien t ,  and by a fac tor  of a p p r o x i m a t e l y  20 at  a mo-  
l e cu l a r  weight  of 3.36.105.  When the same  mo lecu l e s  p a s s  f r o m  a c y l i n d r i c a l  s p i r a l  confo rmat ion  to a s t a t i s t i c a l  coi l  
t h e r e  is no d e c r e a s e  in in t r in s i c  v i s c o s i t y  ([13], p.  174.) 

For purposes of the subsequent qualitative calculations we will determine the limiting value of K a characterizing 
a dilute solution of highly elongated particles with a small transverse dimension in the presence of a high velocity 

gradient, i.e., when (Pro = 0. Under these conditions Px ~ #0 (Fig. i, [12]), and #y is easily calculated using the value 
of the intrinsic viscosity at very small velocity gradients. Since at small velocity gradients ~m = 45~ whereas at 

large gradients q2 m = 0, the ratio of the velocities at these two orientation angles, when the shear is along the y-axis, 

is equal to cos 45 ~ (Eq. (2)). In the presence of Stokes flow the drag is directly proportional to the freestream 
velocity; therefore the ratio of the intrinsic viscosities is also equal to cos 45 ~ Consequently, 

I , C[No 

where [P]0 is the intrinsic viscosity at very small velocity gradients. For the limiting value of the dynamic viscosity 
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anisotropy we obtain 

K a : t -~ ~/-2c [~t]0 . (3) 

All this re la tes  to l a m i n a r  flows. However,  the pr incipal  r equ i r emen t - - the  p resence  of a la rge  velocity gradient  
in one d i r ec t ion - - i s  also sa t is f ied in the tu rbulen t  boundary l ayer  (in the v iscous  sublayer  and the t r ans i t ion  layer) .  In 
this  zone the elongated pa r t i c l e s  should be or iented  with the long axis along the wall. The f luctuations in the viscous 
sublayer  and t r ans i t i on  l aye r  c rea te  f luctuational  velocity gradients .  

The d iss ipa t ion  of f luctuat ing motion along and across  the flow is de te rmined  by the longitudinal  #x and 
t r a n s v e r s e  #y v i scos i t i e s .  As a r e su l t  of the dynamic v iscos i ty  anisotropy the t r a n s v e r s e  f luctuat ions should be more  
s t rongly damped.  In the tu rbulen t  core,  where the averaged velocity gradient  is re la t ive ly  smal l ,  there is prac t ica l ly  
no dynamic v iscos i ty  anisot ropy,  and the flow behaves like a Newtonian fluid. 

This proper ty  of solution flow has been exper imenta l ly  confirmed by Khabakhpasheva (Siberian Thermophys ics  
Colloquium, 1968; for a descr ip t ion  of the m e a s u r e m e n t s  see [15]). In that par t  of the viscous  sublayer  and the 
t r ans i t i on  layer  where it has proved poss ib le  to obtain exper imenta l  data, the t r a n s v e r s e  veloci ty f luctuations in an 
aqueous solution were found to be approximate ly  three  t imes less  than in water ,  and the longitudinal  f luctuat ions in a 
ce r ta in  zone even g rea t e r .  

In order  to calcula te  the Toms effect we will  s t a r t  f rom the exper imenta l ly  es tabl ished re la t ions  for the  quas i -  
s ta t ionary  th ickness  of the v iscous  sub layer  and the averaged velocity d is t r ibut ion  in the sub layer  for a Newtonian fluid 
flow: 

Vo = -~o (4) 5o -- a If "r~ / po ~'o 

TW 
u = ~ o  y ann yg6o (5) 

Here ,  6 0 is the th ickness  of the viscous  sublayer ,  v 0 is the kinemat ic  v i scos i ty ,  r w is the f r ic t ion  s t r e s s  at the 
wal l ,  P0 is the solvent  densi ty ,  a is an exper imenta l ly  de te rmined  constant ,  and U is the averaged longitudinal  velocity.  

Let us compare  the flows of solvent  (Newtonian fluid) and solution at the same averaged velocity gradient  in the 
viscous  sublayer .  The dependence of the f r ic t ion s t r e s s  at the wall on the averaged veloci ty gradient  in the solution is 
r ep r e sen t ed  in a form analogous to (5): 

dU 
Tw = ~ c~-y§ b (6) 

Here ,  b is the non-Newtonian co r rec t ion ,  a function of the velocity gradient  whose s ignif icance is c l ea r  f rom 
Fig.  1. Since as 

dU b 
d ~ - ~  ~,  ~x-~ ~to and~x d U / d y  - - ,0  

for a sufficiently la rge  averaged veloci ty  gradient  we can wri te  

T~ ~ T~* (7) 

where  Tw* is the f r ic t ion  s t r e s s  at the wall  in the solution. 

Since in the solvent  and solut ion flows only the two v i scos i t i e s  #y and #0 differ ,  for the thickness  of the viscous 
sublayer  in the solut ion we can wri te  the genera l  express ion  

~o! (~y / ~o) (8) 

Here a s is a constant ,  p is the densi ty  of the solut ion,  and f(Vy/V o) is a s t i l l  unknown function. 

The form of the function f can be found by cons ider ing  the action of the velocity f luctuations on the par t ic les  
or iented  by tile averaged flow. The s imp le s t  fo rm of this function is 
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~o 

Moreover ,  we a s sume  that a = a 1. If we now use re la t ion  (7) and the approximat ion p = P0, which is valid for 
dilute solut ions,  then for the rat io of the th icknesses  of the v iscous  sublayer  we can wr i te :  

8 o - -  ~ ~_~ = Ko (9 )  
60 ~ ~o 

i.e., the thickness of the viscous sublayer in the solution is greater than that in the solvent by a factor of 
approximately K a . 

We now compare the flows of solvent and solution at the same averaged velocity gradients in the viscous 
sublayer. Accordingly, at the outer edge of the viscous sublayer in the solution the averaged velocity will be greater 
than in the solvent by AU (using relations (I), (2), and (7)): 

A U  ~ U l *  - -  U l vw , __ "rw6o ~o (60 0o) = ~ (K~ - -  I) (10) 

where  U l is the averaged veloci ty at the outer edge of the viscous  sublayer .  

For a qualitative calculation the constant a may be taken equal to I0 [16]. 

As a result, instead of (I0) we obtain 

au  ~ 1o u ~ /po ( t ;~  --  I) (11) 

The velocity increment AU, obtained at the outer edge of the viscous sublayer (in this qualitative calculation the 
transition layer is disregarded), will be the velocity increment at the outer edge of the boundary layer, since in the 
turbulent core the solution behaves like a Newtonian fluid. In order to relate the local coefficient of friction at the wall 
with the velocity at the outer edge of the boundary layer we employ the following formula, valid at Reynolds numbers 
R x of the order of 10 7 (for another range of Reynolds numbers it is necessary to take the appropriate relation from 
[171) : 

Uox 2Vw 
c / ~  0.0576 (Rx) -% (R x = 

Vo ' cs  = ~ )  \ 
(12) 

Here,  cf is the local coefficient  of f r ic t ion;  U 0 is the veloci ty at the outer edge of the boundary  l aye r .  Then 

AU t0 ]/0.0576 (K a -  ~) (13) 

Using (3), we f inal ly obtain 

AU 5 1/0.0576 [~]o c 
Uo ~ (R~)o.t (14) 

Quali tat ive express ions  have now been obtained for the re la t ion  between the Toms effect and the c h a r a c t e r i s t i c s  
of the boundary layer  and the solution.  If quant i ta t ive data a re  requ i red ,  it will  be n e c e s s a r y ,  f i r s t ,  to take into 
account the f in i teness  of the pa r t i c le  elongation; we assumed that the elongation >>1. In this case  it may turn  out that 
#x is appreciably  g rea te r  than #0. It should also be kept in mind that the elongation of a deformable  pa r t i c le  depends 
on the shear  s t r e s s .  Secondly, finding the form of the function f ( v y / p  0) (8) r e q u i r e s  theore t ica l  and expe r imen ta l  
inves t igat ions  of the dependence of the th ickness  of the viscous  sub layer  of the solut ion on the in tens i ty  of the 
t r a n s v e r s e  veloci ty f luctuat ions in the viscous  sublayer  and the t rans i t ion  l aye r .  

The final express ion  (14) not only cor rec t ly  re f lec t s  the laws of turbulent  flow of solut ions of chain 
mae romolecu l e s  but also gives quanti tat ive r e su l t s  cons i s ten t  with the exper imenta l  data.  Thus,  for example,  at a 
solution viscos i ty  ix = 2 eP and Reynolds number  R x = 107, Eq. (15) gives an inc rease  in veloci ty by a factor  of 2. This 
is in good ag reemen t  with the exper imenta l  data of [1-7],  which indicate a velocity i nc r e me n t  of 30-50%. 

It remains to mention the dependence of the Toms effect on the concentration of the solution (Eq. (14)) : this 
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becomes more  pronounced as the concentration increases .  It has been experimental ly establ ished that any polymer has 
an optimum concentration at which the Toms effect is maximum, diminishing as the concentration continues to 
inc rease .  However, this does not contradict  relat ion (14), since it was obtained for very dilute solutions and thus 
cha rac te r i zes  only par t  of the dependence of U-10AU on c. 
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